EXTREN FIBERGLASS STRUCTURAL SHAPES AND PLATE # **EXCLUSIVELY** - » Corrosion Resistant - High Strength-to-Weight - » Easy Installation - » Cost Effective - » Low Maintenance - Low Conductivity - » Dimensionally Stable # EXTREN® FIBERGLASS STRUCTURAL SHAPES AND PLATE This entire rooftop structure was built using EXTREN®, to take advantage of its transparency to RF and cellular signals. EXTREN® structural shapes have become an ideal alternative for traditional wood in cooling tower construction. ### What is EXTREN®? EXTREN® replaces steel, aluminum, and wood in a wide variety of structural applications. EXTREN® is a durable, lightweight, cost saving structural material. This brochure provides basic information about the EXTREN® product line and shows many examples of how EXTREN® provides solutions for end users in a variety of markets and applications. #### FXTRFN® is: - Corrosion Resistant - Structurally Strong - Impact Resistant - Lightweight - · Easy to Field Fabricate - Low in Thermal and Electrical Conductivity EXTREN® is manufactured by the pultrusion process. In its simplest terms, pultrusion is the process of pulling fiberglass (or other) reinforcements through a "bath" of thermosetting resin and into a heated forming-and-curing die to produce composite structural shapes. Reinforcement placement, resin formulation, catalyst levels, die temperature and pull speed are critical process parameters. Strongwell is world leader of the pultrusion process with more than 60 pultrusion machines in four plant locations across North America. ### Why Use EXTREN®? EXTREN® is the result of decades of experience in manufacture, design, and fabrication. EXTREN® offers the following advantages: - Corrosion Resistance Superior resistance to a broad range of chemicals. Unaffected by moisture or immersion in water when sealed. Will not rust like metal and will not rot like wood. - **High Strength-to-Weight** Pound-for-pound, EXTREN® pultruded fiberglass structural shapes are stronger than steel in lengthwise direction. Strongwell FRP weighs up to 75% less than steel and 30% less than aluminum ideal when maximum performance is required but every pound counts. - Easy Installation Can be field fabricated using simple carpenter tools and is easily lifted into place during installation with less equipment or specialized labor vs. steel. - Cost Effective Because installation of Strongwell FRP is much simpler and quicker than steel, structures built using Strongwell's pultruded products can cost as much as 15% less than carbon steel, 30% less than galvanized steel, and as much as 50% less than stainless steel. - Virtually Maintenance Free Will not permanently deform under impact. Corrosion resistance eliminates need for constant painting and upkeep. Provides long-term, cost effective solutions with lower life cycle costs. - Durability & Weatherability Resists impact, non-denting and hard to break. Pigmented resin, surfacing veil, and UV-Inhibitors prevent moisture absorption, warping, fiber bloom, and delays fading. ### **Materials of Construction** EXTREN® is an engineered composite consisting of: - Fiberglass rovings for increased strength - Continuous strand mat for crosswise strength and imact resistance - Synthetic surfacing veil for corrosion and UV protection - Resin (specified by Series) # THE EXTREN® SERIES EXTREN® is pultruded structural composite profiles and plate produced exclusively by Strongwell with the EXTREN® logo embedded in the surfacing veil. It meets or exceeds the minimum published mechanical, physical, electrical, flammability, and corrosive properties of the respective Series published in the *Strongwell Design Manual*. ### **EXTREN® Series 500** Premium Polyester Resin, UV inhibitor added Standard Color: olive green A general purpose resin with excellent corrosion properties ### **EXTREN® Series 525** Premium Polyester Resin, UV inhibitor added, Flame retardant additives Standard Color: slate gray A general purpose resin with excellent corrosion properties and improved fire performance ### **EXTREN® Series 600** Premium Vinyl Ester Resin, UV inhibitor added Standard Color: light gray For harsher corrosive environments and higher temperature applications ### **EXTREN® Series 625** Premium Vinyl Ester Resin, UV inhibitor added, Flame retardant additives **Standard Color:** beige For harsher corrosive environments, higher temperature applications, with improved fire performance In addition to the above EXTREN® products, Strongwell manufactures custom pultrusions. These pultrusions vary from EXTREN® in either shape, resin type, or reinforcement (type, amount, location and/or orientation). Designers may choose to vary one or all of these parameters to improve strength, temperature resistance, corrosion resistance, machinability, or some other characteristic. Consult Strongwell with specific needs or questions. ### **E23** All standard EXTREN® products meet and/or exceed the structural requirements of E17 European standards. EXTREN® can be manufactured upon request to meet the mechanical and physical properties of BS EN 13706 (E23) European standards. ### **NSF** International Most Strongwell products can be manufactured to meet NSF-61 certification upon request. Contact Strongwell for details. EXTREN® Series: (left to right) 500, 625, and 525. EXTREN® structural shapes were used in a SXEW copper refinery because of the highly corrosive environment. A 63' (19.2m) high freestanding fiberglass stair tower at Ft. Story Army Base, Virginia Beach, Virginia. # **PROPERTIES** | | | ASTM | | SERIES | SERIES | SERIES 500/525 PLATE ⊕ | | | SERIES 600/625 PLATE ④ | | | |--------------------------------------|----------------------|----------------|-----------------------------------|-------------------|-------------------|------------------------|----------------------------|-------------------------|------------------------|-----------------------------|-------------------------| | | | TEST
Method | UNITS/
Value | 500/525
Shapes | 600/625
Shapes | 1/8"
3.175mm | 3/16" - 3/8"
4.76-9.5mm | 1/2" - 1"
9.5-25.4mm | 1/8"
3.175mm | 3/16" - 1/4"
4.76-6.35mm | 3/8" - 1"
9.5-25.4mm | | MECHAN | ICAL | | | | | | | | | | | | Tanaila Ctuana | 134/ | D000 | psi | 30,000 | 30,000 | 20,000 | 20,000 | 20,000 | 20,000 | 20,000 | 20,000 | | Tensile Stress, LW | | D638 | N/mm² | 207 | 207 | 138 | 138 | 138 | 138 | 138 | 138 | | Tanaila Ctuana | OW | DCOO | psi | 7,000 | 7,000 | 7,500 | 10,000 | 10,000 | 7,500 | 10,000 | 10,000 | | Tensile Stress, CW | | D638 | N/mm² | 48.3 | 48.3 | 51.7 | 68.9 | 68.9 | 51.7 | 68.9 | 68.9 | | Tanaila Madul | uo IW | Dean | 10 ⁶ psi | 2.5 | 2.6 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | | Tensile Modul | us, Lvv | D638 | 10 ³ N/mm ² | 17.2 | 17.9 | 12.4 | 12.4 | 12.4 | 12.4 | 12.4 | 12.4 | | Tensile Modulus, CW | | DESO | 10 ⁶ psi | 0.8 | 0.8 | 0.7 | 0.9 | 1.0 | 1.0 | 1.0 | 1.0 | | | | D638 | 10 ³ N/mm ² | 5.52 | 5.52 | 4.83 | 6.21 | 6.89 | 6.89 | 6.89 | 6.89 | | Compressive | Ctropp IW | DEGE | psi | 30,000 | 30,000 | 24,000 | 24,000 | 24,000 | 24,000 | 24,000 | 24,000 | | Compressive Stress, LW | | D695 | N/mm² | 207 | 207 | 165 | 165 | 165 | 165 | 165 | 165 | | Compressive Stress, CW | | D695 | psi | 15,000 | 16,000 | 15,500 | 16,500 | 20,000 | 16,500 | 17,500 | 17,500 | | | | | N/mm² | 103 | 110 | 107 | 114 | 138 | 114 | 121 | 121 | | Compressive Modulus, LW | | DCOF | 10 ⁶ psi | 2.5 | 2.6 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | | | | D695 | 10 ³ N/mm ² | 17.2 | 17.9 | 12.4 | 12.4 | 12.4 | 12.4 | 12.4 | 12.4 | | Compressive Modulus, CW | | D005 | 10 ⁶ psi | 0.8 | 0.8 | 0.7 | 0.9 | 1.0 | 1.0 | 1.0 | 1.0 | | | | D695 | N/mm² | 5.52 | 5.52 | 4.83 | 6.21 | 6.89 | 6.89 | 6.89 | 6.89 | | Flexural Stress, LW | | D790 | psi | 30,000 | 30,000 | 24,000 | 24,000 | 24,000 | 24,000 | 24,000 | 24,000 | | | | | N/mm² | 207 | 207 | 165 | 165 | 165 | 165 | 165 | 165 | | Flexural Stress, CW | | D790 | psi | 10,000 | 10,000 | 10,000 | 13,000 | 17,000 | 10,000 | 13,000 | 17,000 | | | | | N/mm² | 68.9 | 68.9 | 68.9 | 89.6 | 117 | 68.9 | 89.6 | 117 | | Flexural Modulus, LW | | D790 | 10 ⁶ psi | 1.6 | 1.6 | 1.1 | 1.1 | 1.4 | 1.1 | 1.1 | 1.4 | | | | | 10 ³ N/mm ² | 11.0 | 11.0 | 7.58 | 7.58 | 9.65 | 7.58 | 7.58 | 9.65 | | Flexural Modulus, CW | | | 10 ⁶ psi | 0.8 | 0.8 | 0.8 | 0.8 | 1.3 | 0.8 | 0.9 | 1.3 | | | | D790 | 10 ³ N/mm ² | 5.52 | 5.52 | 5.51 | 5.51 | 8.96 | 5.51 | 6.21 | 8.96 | | Modulus of Elasticity ① full section | | | | | LW: 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | | | | | | 10 ⁶ psi | 2.6 | 2.8 | CW: 0.8 | 0.8 | 1.3 | 0.8 | 0.9 | 1.3 | | | | | 10 ³ N/mm ² | 17.9 | 19.3 | LW: 13.7 | 13.7 | 13.7 | 13.7 | 13.7 | 13.7 | | | | | | | | CW: 5.51 | 5.51 | 8.96 | 5.51 | 6.21 | 8.95 | | Modulus of | W & I shapes > 4" | full | 10 ⁶ psi | 2.5 | 2.5 | - | - | - | - | - | - | | Elasticity: | W & I shapes > 102mm | section | 10 ³ N/mm ² | 17.2 | 17.2 | _ | - | - | - | - | - | | | | | 10 ⁶ psi | 0.425 | 0.425 | - | - | - | - | - | - | | Shear Modulus, LW ②® | | D5379 | 10 ³ N/mm ² | 2.93 | 2.93 | - | - | - | - | - | - | | | | | psi | 4,500 | 4,500 | - | - | - | - | - | - | | Short Beam Shear, LW ②® | | D2344 | N/mm² | 31.0 | 31.0 | _ | - | - | _ | - | - | | Ultimate Bearing Stress, LW | | D953 | psi | 30,000 | 30,000 | 32,000 | 32,000 | 32,000 | 32,000 | 32,000 | 32,000 | | | | | N/mm² | 207 | 207 | 221 | 221 | 221 | 221 | 221 | 221 | | Poisson's Ratio, LW ® | | D3039 | in/in | 0.33 | 0.33 | 0.31 | 0.31 | 0.31 | 0.32 | 0.32 | 0.32 | | | | | mm/mm | 0.33 | 0.33 | 0.31 | 0.31 | 0.31 | 0.32 | 0.32 | 0.32 | | Poisson's Ratio, CW ® | | D3039 | in/in | - | - | 0.29 | 0.29 | 0.29 | 0.24 | 0.24 | 0.24 | | | | | mm/mm | - | - | 0.29 | 0.29 | 0.29 | 0.24 | 0.24 | 0.24 | | Notched Izod Impact, LW | | D256 | ft-lbs/in | 25 | 25 | 15 | 10 | 10 | 15 | 10 | 10 | | | | | J/mm | 1.33 | 1.33 | 0.801 | 0.533 | 0.533 | 0.801 | 0.533 | 0.533 | | Notched Izod Impact, CW | | D256 | ft-lbs/in | 4 | 4 | 5 | 5 | 5 | 5 | 5 | 5 | | | | | J/mm | 0.214 | 0.214 | 0.267 | 0.267 | 0.267 | 0.267 | 0.267 | 0.267 | | | | | 0, | 0.211 | 0.211 | 0.207 | 0.201 | 0.207 | 0.207 | 0.201 | 0.207 | | | ASTM | UNITS/
Value | SERIES
500/525
SHAPES | SERIES
600/625
SHAPES | SERIES 500/525 PLATE ④ | | | SERIES 600/625 PLATE ⊕ | | | |--|----------------|------------------------------------|-----------------------------|-----------------------------|--------------------------------|----------------------------|-------------------------|------------------------|-----------------------------|-------------------------| | | TEST
Method | | | | 1/8"
3.175mm | 3/16" - 3/8"
4.76-9.5mm | 1/2" - 1"
9.5-25.4mm | 1/8"
3.175mm | 3/16" - 1/4"
4.76-6.35mm | 3/8" - 1"
9.5-25.4mm | | PHYSICAL* | | | | | | | | | | | | Barcol Hardness | D2583 | - | 45 | 45 | 40 | 40 | 40 | 40 | 40 | 40 | | 24 hr Water Absorption ⑥ | D570 | % Max | 0.60 | 0.60 | 0.60 | 0.60 | 0.60 | 0.60 | 0.60 | 0.60 | | Donaity | D792 | lbs/in³ | 0.062-0.070 | 0.062-0.070 | 0.060-0.068 | 0.060-0.068 | 0.060-0.068 | 0.060-0.068 | 0.060-0.068 | 0.060-0.068 | | Density | D/92 | 10 ⁻³ g/mm ³ | 1.72-1.94 | 1.72-1.94 | 1.66-1.88 | 1.66-1.88 | 1.66-1.88 | 1.66-1.88 | 1.66-1.88 | 1.66-1.88 | | Coefficient of Thermal Expansion, LW ® | D696 | 10 ⁻⁶ in/in/°F | 7 | 7 | 8 | 8 | 8 | 8 | 8 | 8 | | Guerricient of Thermal Expansion, LW | D090 | 10 ⁻⁶ mm/mm/°C | 12 | 12 | 14.5 | 14.5 | 14.5 | 14.5 | 14.5 | 14.5 | | Coefficient of Thermal Expansion, CW ® | D696 | 10 ⁻⁶ in/in/°F | 16 | 16 | - | - | - | - | - | - | | Coefficient of Thermal Expansion, OW | | 10 ⁻⁶ mm/mm/°C | 28.8 | 28.8 | - | - | - | - | - | - | | Thermal Conductivty ® | C177 | BTU-in/ft²/hr/°F | 4 | 4 | - | - | - | - | - | - | | Thermal Conductivity | 0177 | W(m * °K) | 0.58 | 0.58 | - | - | - | - | - | - | | *All values are minimum ultimate properties from coupon tests except as noted. | | | | | | | | | | | | ELECTRICAL | | | | | | | | | | | | Arc Resistance, LW ® | D495 | seconds | 120 | 120 | - | - | - | - | - | - | | Dielectric Strength, LW ® | D149 | KV/in | 35 | 35 | 35 | 35 | 35 | 35 | 35 | 35 | | Dielectric Strength, LW ® | | KV/mm | 1.38 | 1.38 | 1.38 | 1.38 | 1.38 | 1.38 | 1.38 | 1.38 | | Dielectric Strength, PF ® | D149 | volts/mil | 200 | 200 | 200 | - | - | 250 | - | - | | FLAMMABILITY S | | | | | | | | | | | | Flammability Classification | UL 94 | V-0 | | | | | | | | | | Tunnel Test | E84 | 25 Max | | | | | | | | | | NBS Smoke Chamber | E662 | 650-700 (Typical) | | | | | | | | | | Flammability | D635 | Self Extinguishing | | | | | | | | | | III. Thompsol Indo. | Generic | 266°F | | | | | | | | | | UL Thermal Index | | 130°C | | | | | | | | | | British Fire Test | BS 476-7 | Class 1 | | | | | | | | | $[\]ensuremath{\mathfrak{D}}$ This value is determined from full section simple beam bending of EXTREN® structural shapes. LW LengthwiseCrosswisePerpendicular to laminate face CW PF ② The Shear Modulus value has been determined from tests with full sections of EXTREN® structural shapes. (See Strongwell's *Design Manual* for further information.) ③ Value would be 50 if the surfacing veil were not there. ④ Plate compressive stress/modulus measured edgewise and flexural stress/modulus measured flatwise. ⑤ Values apply to Series 525 and 625 (≥ 1/8" thickness). ⑥ Measured as a percentage maximum by weight. [©] Span to depth ratio of 3:1; EXTREN® angles will have a minimum value of 4000 psi and the I/W shapes are tested in the web. [®] Typical values. # **DESIGNING WITH EXTREN®** most up-to-date design information. Register your email address and information; you'll receive access immediately via email. ### **Design By Strongwell** Strongwell has on-staff registered Professional Engineers experienced in the design of fiberglass structures and systems for custom design requirements. Strongwell's extensive experience in fabrication procedures, joint design and stress analysis of composite assemblies, when combined with the use of Strongwell fiberglass products, results in structures of superior, cost-effective design and structural integrity. Strongwell provides drawings of any of its designed-in-house structures for approval before fabrication begins. ### **Design It Yourself** The Strongwell Design Manual, developed by Strongwell, is the most complete reference guide in the industry for designing FRP structures and is used by more engineers and architects than any other FRP engineering guide. With more than 400 pages of engineering data, the Design Manual includes properties of materials, beam and column load tables, empirical design equations and sample calculations, connection details, and FRP product and fabrication specifications. Strongwell's Design Manual can be found online at www.strongwell.com. It is based upon years of extensive product testing and experience in monitoring applications of EXTREN® fiberglass structural shapes, fiberglass grating, handrail and other proprietary pultruded products. ### **WARNING!** Fiberglass reinforced thermoset plastic composites are non-homogenous materials (i.e., their strengths and behavior are dependent upon the design of the composite and reinforcement). Other fiberglass structural shapes with a similar exterior appearance to EXTREN® shapes are likely not equal in any other way to EXTREN®, including glass content, glass placement, glass type, wet out, resin mixture or pull speed. Do not use the *Strongwell Design Manual* to design a structure unless only EXTREN® structural materials are used. ### **EXTREN® Product Logo** Since July 1, 1993, all EXTREN® fiberglass structural shapes and plate have been imprinted with the "EXTREN® Made in the USA" logo every three feet down the length of the part. Square and round tubes have the logo imprinted inside the shape. Small and unobtrusive, the logo assures customers that they are getting EXTREN® properties backed by corrosion, mechanical, and structural testing, as conducted by Strongwell. ### **Fabrication** Working with EXTREN® is somewhat similar to working with wood, but there are some differences in cutting and fastening. These differences are presented in detail in the *EXTREN® Fabrication and Repair Manual*. This manual also presents the cleaning, inspection, maintenance, and repair of EXTREN® structural shapes. # **QUALITY AND AVAILABILITY** Strongwell manufacturing facilities are ISO 9001 certified. This ensures the highest quality standards for every piece of EXTREN® used in the field. A "first article" series of tests on each EXTREN® production run assures that the structural members meet or exceed published minimum criteria. With a 10,000 square-foot on-site R&D laboratory and full-time R&D staff, Strongwell can perform most testing procedures, material qualifications, and quality experiments in house. These resources provide Strongwell, its customers, and suppliers unmatched technical expertise. Strongwell maintains a large inventory of many commonly-used EXTREN® structural shapes and plate. Refer to the *Strongwell Availiabilty List* for more details. Strongwell's laboratory and research facility is large, well-equipped, and professionally staffed. Rheology/DMA to determine glass transition temperature and other viscoelastic properties of resin mixes as well as solid composites. Strongwell can perform incoming resin tests to verify the suppliers' conformance to specified requirements. Differential Scanning Calorimetry (DSC) for profiling the cure characteristics of resin mixes. **Below:** Strongwell maintains a large intentory of many commonly-used EXTREN® structural shapes and plate. Refer to the Strongwell Availability List for more details. # **MARKETS** Strongwell works every day to provide solutions to tough engineering and design challenges like the examples shown here. As engineers become aware of the features and benefits of pultrusion, the range of applications for composite materials continues to grow. ### **Architectural** Strongwell manufactures numerous products used in the architectural market, including walkways and handrail, to fully customized shapes like the one above, Strongwell's fiberglass pultrusions are strong, lightweight, corrosion resistant, and durable. ### **Building / Construction** The EXTREN® line includes over 100 standard shapes, and Strongwell manufactures hundreds of other profiles used in building and construction, which have been used to save weight, increase corrosion resistance, provide aesthetic beauty, and reduce maintenance costs. ### Cellular EXTREN® is often an ideal material for building anywhere that electro-magnetic (EMI) or radio frequency interference (RFI) is a concern. Strongwell FRP has been used extensively for applications ranging from architectural screening to entire structures - FRP is nearly invisble to cellular and radio frequencies. ### **Coastal / Marine** Fiberglass handrail, pultruded grating, decking, and EXTREN® from Strongwell offer an attractive, low-maintenance and long-lasting alternative to steel and wood in corrosive marine and freshwater environments. # **Electric Utility** The high strength to weight ratio, low electrical conductivity and proven durability of Strongwell's FRP make it an attractive option for electric utilities seeking to upgrade or install new materials. ### **Hotel / Motel** Constant maintenance at hotel and motel facilities have driven many operators to select Strongwell FRP to replace traditional materials, especially in exterior handrail, stairways, walkways, and water play areas. ## **Chemical Processing** The superior corrosion resistance of Strongwell FRP makes it an excellent choice around most harsh chemicals in a variety of environments. In addition, Strongwell offers a vast Corrosion Resistance Guide to help end users determine the expected performance of FRP in their application(s). ### Infrastructure Strongwell is actively involved in the advancement of FRP technology for civil infrastructure applications. These efforts include the research and development of new products as well as in the establishment of engineering and performance standards. ### **Transportation** Incorporating FRP into structures and designs reduces the overall structure weight and foundational requirements. Installation can also be much faster and less complicated, reducing congestion in work zones and improving safety. ### Mining Engineers and end users are replacing traditional materials with FRP in corrosive mining environments. FRP provides lower life cycle costs, offers outstanding performance and provides superior quality. ### **Air Pollution Control** Odor control covers made with traditional materials weigh significantly more than those made with FRP. Strongwell's odor control covers weigh up to 75% less than steel and 30% less than aluminum, and offer superior corrosion resistance in the chemical-laden wastewater processing setting. # **Food & Beverage** The processing of many foods and beverages creates significant corrosion and food safety challenges for end users. Many Strongwell products can be manufactured to meet NSF-61 certification for hot and cold, while offering exceptional corrosion performance in most food processing environments. ### **Water / Wastewater** Strongwell offers a wide range of fiberglass products for the water and wastewater treatment industries, including NSF compliant structures for use in potable water systems. For example, EXTREN® structural shapes are often used with FRP baffles for an all-FRP system. ### Oil & Gas Strongwell's structural composites have proven to be an effective long-term solution in the Oil and Gas market. Weight savings, durability, and resistance to salt air and seawater are just a few of the benefits which fiberglass composites provide over steel. ### **Parks & Recreation** Strongwell's pultruded fiberglass materials can replace wood and metal to help reduce maintenance costs, reduce downtime and increase the beauty of parks and recreational areas, especially in areas which currently require frequent maintenance. ISO 9001 Quality Certified Manufacturing Plants ### **BRISTOL LOCATION** 400 Commonwealth Ave. Bristol, VA 24201 USA (276) 645-8000 ### **HIGHLANDS LOCATION** 26770 Newbanks Road Abingdon, VA 24210 USA (276) 645-8000