

DURABILITY STUDY

DECADES LATER: STILL BETTER THAN NEW STEEL

In 1979, over 10,000 square feet of DURAGRID® I-4000 1" (formerly DURADEK®) pultruded grating was installed in lieu of steel grating in the well bays and adjacent areas on Shell's offshore platform Ellen. The platform was destined for the Beta Field off the shore of southern California. Now, with over 40 years of use, the grating continues to show an excellent return on investment for current operators, Beta Offshore.

Anti-skid DURAGRID® has always been known for excellent durability and the 40-plus year exposure on

Ellen has had little to no effect on the grating. Even accidental sandblasting and paint overspray has not noticeably degraded the grating's performance.

Previous reports indicated that abuse from the platform's SSV's (surface safety valves) and performing acid jobs have never been a problem. Workers experience less fatigue and a better kneeling environment with DURAGRID® pultruded grating.

When asked in 2010 about the lifespan of the grating on the platform, the Facility Superintendent at that time stated, "The grating looks to be in great shape. The surface shows very little wear and tear."

In 2020, Strongwell was able to acquire and examine a portion of the original grating for flexural testing. The removed panels were taken from an area on the offshore rig that received heavy daily foot traffic and constant UV exposure. Upon visual inspection, the grating had some cosmetic wear with no visual signs of glass exposure.

As one of the first generation designs, the panels were assembled with 3/8" FRP rods and polypropylene bushings to achieve proper bar spacing. Today's designs utilize a 3-piece mechanically locked and bonded cross rod design to achieve optimal bearing bar support with peak performance.

	l	DURAGRID® 1-400	New Steel Grating [†]			
Span, L=42"		Original Published Properties	Properties After 40 Years of Offshore Service	1.5"	1"	
Modulus, E		4.88 x 10 ⁶ psi	4.0 x 10 ⁶ psi	29 x 10 ⁶ psi		
Max Load	10 bar panels	4,122 lb*	3,385 lb	1.218 lb	541 lb	
Max Luau	9 bar panels	3,710 lb*	2,901 lb	1,21010		
Allowable Load		1413 psf	1132 psf	696 psf	309 psf	

*Prorated value - I-4000 series has 12 bars per foot of width. †From ANSI/NAAMM Metal Bar Grating Manual MBG 531-17.

With over 40 years of daily exposure to weather and pedestrian traffic, the grating still retained over 80% of its flexural modulus and 80% of its maximum load capability from its published load tables. As tested against the published data for that particular series of grating, the extracted sample maxed out at 3.385 lbs.

Too often, the industry concentrates on short term costs. Now, decades later, the decision to go with DURAGRID® has proven to be a better return on investment than even new steel. •

TECHNICAL DATA

Product: FRP Well Bay Platform

Process: Pultrusion

Materials DURAGRID® Pultruded Grating and Stairtreads:

& Sizes: - I-4000 1"

For: Ellen Offshore Platform

User: Beta Offshore (Previously: Aera Energy LLC

(formerly Shell Oil Co.))

Chatfield Location 1610 Highway 52 South Chatfield, MN 55923 USA (507) 867-3479 www.strongwell.com

Offshore Grating Panel Property Retention

DATE: 02/06/2020 REPORT #CHA0160

Strongwell performed flexural tests to failure on four grating panels removed from the Ellen offshore platform. These panels were installed on the Ellen offshore platform in 1979 and were provided by the current owner, Amplify Energy. Located directly outside the galley, they have been subjected to more than 40 years of constant environmental exposure and pedestrian wear. Visual inspection shows no grit remaining and no exposed glass.

These panels were assembled with 3/8" FRP rods and polypropylene bushings to provide proper bearing bar spacing. (This was our original pultruded grating assembly method, begun in the late 1970's.) Sample panels were ripped down to accommodate the test fixture width. End bars were pinned at cross rods to prevent panel from disassembling during handling.

The attached load table from August 1985 brochure is applicable to this manufacturing period.

Grating Description:

I4000-1", Gray with cross rods at 12", drip edge on bearing bar flanges.

Riveted plate states "DURADEK® AFC, Inc. Chatfield, MN".

Test Span: 42" with load head centered between cross rods

Test Speed: 0.50 inch/minute

Load Table Modulus: 4.88 x 10⁶ psi Average Test Modulus: 4.0 x 10⁶ psi

Adjusted Load Table Maximum Load: (4,947 lb) (10 bars / 12 bars) = 4,122 lb

Average Test Peak Load for 10 bar panels: 3,385 lb

Adjusted Load Table Maximum Load: (4,947 lb) (9 bars / 12 bars) = 3,710 lb

Average Test Peak Load for 9 bar panels: 2,901 lb

Rod-and-bushing cross rods were loose and allowed the bearing bars twist out of vertical plane, resulting in a peak load lower than anticipated. Current 3-piece cross rod improves bearing bar stability and increases peak performance.

CONCLUSION:

After forty years of continuous service and exposure, the grating panels have retained approximately 82% of their flexural modulus and 80% of the maximum load reported in the historic load table.

> I hereby certify that this plan, specification, or report was prepared by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the laws of the State of Minnesota

GREGORY R. BOND

REG. NO. 40306

TEST OBSERVERS: Gregory Bond, PE Kealon Vrieze Jeff Finley

				OTHER COMMON SERIES AND SPACING (X) : SERIES (X)						1' I BEARING BARS: VALUES FOR 12 BARS PER FT OF WIDTH A = 3.744 IN ² /FT OF WIDTH S = 0.984 IN ³ /FT OF WIDTH											
SPAN				I-7000 I-7500 I-8000 OR MULTIPLES OF		2.000" 2.400" 3.000" ABOVE				A =	W	I = 0.492 WEIGHT/FOOT		IDTH S = 0.984 IN ³ /FT OF WIDTH 492 IN ⁴ /FT OF WIDTH ³ 10T =253 LBS/FT OF BAR T = .302 LBS/FT OF CROSS ROD		н	MAXIMUM LOAD	SAFE LOAD 2:1 SAFETY FACTOR	E x 10 ⁶ PSI		
12	υ Δυ c	200 .002 100	400 .005 200	600 .007 300	800 .010 400	1000 .012 500	1500 .018 750	2000 .024 1000	2500 .030 1250	3000 .036 1500	4000 .048 2000	5000 .060 2500	6000 .073 3000	7000 .085 3500	8000 .097 4000	9000 .109 4500	10000 .121 5000	11000 .133 5500	31200 .377 15600	15600 .188 7800	3.78
18	Δ C U Δ U C	.002 133 .007 100	.004 267 .015 200	.006 400 .022 300	.008 533 .030 400	.010 667 .037 500	.015 1000 .056 750	.019 1333 .074 1000	.024 1667 .093 1250	.029 2000 .111 1500	.039 2667 .149 2000	.048 3333 .186 2500	.058 4000 .223 3000	.068 4667 .260 3500	.078 5333 .297 4000	.087 6000 .334 4500	.097 6667 .371 5000	.107 7333 .408 5500	.303 14862 .828 11145	.151 7431 .414 5572	4.15
24	Δ C U Δ U C	.006 100 .017 100	.012 200 .033 200	.018 300 .050 300	.024 400 .066 400	.030 500 .083 500	750 .124 750	.059 1000 .165 1000	.074 1250 .207 1250	.089 1500 .248 1500	.119 2000 .331 2000	.149 2500 .414 2500	.178 3000 .496 3000	.208 3500 .579 3500	.238 4000 .662 4000	.268	.297	.327	.663 8700 1.439 8700	.331 4350 .719 4350	4.4
30	Δ U Δ U C	.013 80 .031 100	.026 160 .062 200	.040 .092 300	.053 320 .123 400	.066 400 .154 500	.099 600 .231 750	.132 800 .308 1000	.165 1000 .385 1250	.199 1200 .462 1500	.265 1600 .616 2000	.331 2000 .770 2500	.397 2400 .924 3000	.463	.530				1.152 5568 2.143 6960	.576 2784 1.071 3480	4.6
36	ΔC U ΔU C	.025 67 .051 100	133 .102 200	.074 200 .153 300	.099 267 .204 400	.123 333 .255 500	.185 500 .383 750	.246 667 .511 1000	.308 833 .638 1250	.370 1000 .766 1500	.493 1333 1.021 2000	.616	.739						1,714 3866 2,961 5799	.857 1933 1.480 2899	4.8
42	Δ C U Δ U C	.041 57 .080 100	.082 114 .160 200	.123 171 .240 300	.163 229 .322 400	.204 286 .402 500	.306 429 .602 750	.408 571 .802 1000	714 1.002 1250	.613	.817				0.6* 0	0.4"	0.16		2.368 2827 3.967 4947	1.184 1413 1.983 2473	4.8
18	ΔC U ΔU C	.064 50 .117 100	.128 100 .235 200	.193 150 .352 300	.257 200 .470 400	.321 250 .587 500	.481 375 .881 750	.642 500 1.174 1000	.802					1.0"	0.6.0	10.4	1.0		3.174 2155 5.059 4310	1.587 1077 2.530 2155	4.9
54	ΔC U ΔU C	.094 .165 100 .133	.188 89 .333 200 .266	133 .498 300 .399	.376 178 .667 400 .532	.470 222 .832 500 .665	.705 267 1.000 750 .998	.940							0.0				4.051 1699 6.363 3822 5.083	2.025 849 3.181 1911 2.542	5.0

ISO 9001 Quality Certified Manufacturing Plants

CHATFIELD LOCATION 1610 Highway 52 South Chatfield, MN 55923 USA (507)867-3479