

PRODUCT COMPARISON

EXTREN®

STRUCTURAL SHAPES & PLATE

Strongwell combines superior raw materials, composite design, and the pultrusion process to manufacture EXTREN® - the highest quality pultruded fiberglass structural shapes available. Listed below are some useful comparisons when considering EXTREN® vs. traditional building materials.

	EXTREN ®	Steel	
Corrosion Resistance	High	Low	
Strength-to-Weight	High	Medium	
Maintenance	Low	High	
Conductivity	Very Low	High	
	EXTREN®	Aluminum	
Corrosion Resistance	High	Medium	
Impact Resistance	High	Low	
EMI/RFI Transparency	High	Low	
Conductivity	Very Low	High	
	EXTREN®	Wood	
Corrosion Resistance	High	Low	
Insect Resistance	High	Low	
Water Absorption	Low	High	
Flame Retardance	Varies by Series	Low	
- ''		.,	

For more specific comparisons, see the table on the next page.

TRADITIONAL MATERIALS

To gain more in-depth data, visit www.strongwell.com/designmanual for access to the Strongwell Design Manual.

COMPARE	EXTREN® FIBERGLASS STRUCTURAL SHAPES	STEEL A-36 CARBON	ALUMINUM EXTRUDED SHAPES	STRUCTURAL TIMBER DOUGLAS FIR
STRENGTH-TO- WEIGHT	Up to 75% lighter than steel and 30% lighter than aluminum. Ultimate Flexural Strength = (Fu) LW = 30 KSI CW = 10 KSI Tensile Strength = LW = 30 KSI CW = 7 KSI	Up to 400% heavier than FRP. Homogeneous material. Tensile Strength = 60 кsi Yield Strength = 36 кsi	Up to 70% heavier than FRP. Flexural Strength = (Fu) 35 кsі Homogeneous material.	Specific Gravity = 0.51* (oven dried) Extreme fiber bending = up to 2800 PSI* Compression parallel to grain = up to 1800 PSI*
INSTALLATION	Can be field fabricated using simple carpenter tools and is easily lifted into place during installation with less equipment or specialized labor vs. steel.	Often requires specialty lifting equipment to move and place. Also requires specialized labor for fabricating and welding.	Good machinability, but requires welding, brazing, soldering, or mechanical joining in the field.	Easy to field fabricate and assemble with simple carpenter tools.
INSTALLED COST	Because installation of Strongwell FRP is much simpler and quicker than steel, structures built using Strongwell's pultruded prod- ucts can cost as much as 15% less than carbon steel, 30% less than galva- nized steel, and as much as 50% less than stainless steel.	+/- 15% higher installed cost than FRP due to need for specialized labor, heavy equipment, and permitting.	Higher material costs than steel, and still often requires specialized labor, heavy equipment, and permitting.	Least expensive installation, but poor longevity in demanding locations, requiring more frequent maintenance and/or replacement.
MAINTENANCE & CORROSION RESISTANCE	Unaffected by moisture or immersion in water when sealed. Will not rust like metal and will not rot like wood.	Subject to oxidation, rust, and corrosion. Requires regular painting or galvanizing for many applications.	Can cause galvanic corrosion. Unless anodized or coated, often requires periodic maintenance to ensure corrosion resistance.	Susceptible to warp, rot, and decay. Hazardous or high-maintenance coatings or preservatives often required for longevity.
CONDUCTIVITY	Extremely low electrical and thermal conductivity properties and high dielectric capability. Thermal Conductivity = 4 (BTU/SF/HR/F°/IN)	Conducts electricity. Potential Shock Hazard. Thermal Conductivity = 260-460 (BTU/SF/HR/F°/IN)	Conducts electricity. Potential Shock Hazard. Thermal Conductivity = 150 (BTU/SF/HR/F°/IN) Thermal Coefficient of Expansion = 11-13 (IN/IN/F°)106	Poor conductor when wet. Can be conductive when it is wet.

^{*}Surface dry at 19% max moisture content <u>Design Values for Wood Construction</u>, National Design Specification for Wood Construction.

400 Commonwealth Ave. Bristol, VA 24201 USA (276) 645-8000

HIGHLANDS LOCATION

26770 Newbanks Road Abingdon, VA 24210 USA (276) 645-8000